AI & ML

Product research gets new life with AI

By
Joel Passen
February 22, 2023
5 min read

Product research is a crucial component of successful software product development. By understanding customer needs, preferences, and behaviors, technology companies can create products that create value for their customers and differentiate in the marketplace. Research helps businesses learn more about their target audience and users’ desired outcomes to develop features and functionality that increase customer engagement and dependency. Let’s face it, the name of the game is getting your customers addicted to your tool or platform. In addition, software product research provides valuable data that businesses can use to optimize customer acquisition and retention motions. 

Traditional product research 

To date, product research has been conducted through surveys, focus groups, and customer interviews. Traditionally, surveys have been emailed to customers immediately to gather qualitative and qualitative feedback. More recently, product experience platforms have given product researchers access to more dynamic in-app surveys, product usage analytics, and the ability to launch traditional surveys with fewer resources.

Customer interviews allow one to ask specific questions and dig deeper into customer motivations, pain points, and specific use cases. Interviews can be extremely useful when businesses try to develop new products or determine how to enhance existing ones. Customer interviews can also provide valuable insights into desired integrations, services, and more. 

Focus groups allow companies to observe how customers interact with products and better understand the user experience. Observing customers using the product can provide valuable insights that are unavailable through surveys or customer interviews. Additionally, observational research, such as shadowing customers in their own environment, can help uncover valuable insights that would otherwise remain hidden.

Here are a few other common ways teams conduct product research:

  • Examine competitors: Analyzing competitors' products and marketing strategies can give you valuable insights into customer preferences and behavior trends in the market.

  • Track sales data: Tracking sales data such as purchase histories, customer feedback, and website analytics can help you pinpoint which products are selling well and which are not so you can adjust your product design accordingly.

  • Monitor social media: Utilizing social media channels like Facebook, Twitter, LinkedIn, and Instagram can help you monitor customer conversations about your product or service and see what users are saying about it.

At the end of the day, what do all of the traditional product research methods have in common? They are labor-intensive, expensive, and time-consuming, requiring intricate expertise and specialization to operate. Another drawback to traditional product research methods is that the data and insights generated are typically used by a small group and not leveraged across the enterprise. 

AI is Changing How Teams Conduct Product Research

ChatGPT, the AI-powered natural language understanding (NLU) platform that helps automate conversations has catapulted AI into the business mainstream. Aside from being all the rage, business leaders are adopting AI now more than ever because of technological advancements that have made it more accurate and faster to deploy. Additionally, AI is becoming increasingly affordable, allowing businesses of all sizes to benefit from the latest advances in artificial intelligence. Furthermore, the increased availability of data has allowed for more sophisticated algorithms and models to be used, enabling better decision-making and providing a competitive edge for businesses that use AI. 

Product leaders recognize that customer expectations are changing rapidly, and AI can help them stay ahead of the curve. While AI and its practical applications are evolving quickly, here are a few ways that advanced data sciences are already impacting product research.

  1. Automating the data capture and cleaning processes

AI automation can take over mundane tasks such as data collection and normalization (cleaning or standardizing data for reuse and analysis), freeing up teams’ time to focus on more strategic initiatives. AI also facilitates the data cleaning and preprocessing (data joining and integration) activities required to glean knowledge from the raw data. 

  1. Eliminating privacy concerns

Privacy issues are often a roadblock for product researchers. Teams must be careful how they use personal data (PII) to discover product insights. Privacy restrictions and personal data limitations challenge legacy experimentation and research methods. AI is paving the way to alleviate these concerns so teams can move quickly. New advances in  PII Identification, de-Identification, synthetic PII generation, and pseudonymization provide teams with tools to iterate and innovate faster than ever without jeopardizing privacy regulations. 

  1. Making sense of previously untapped data sets

AI-powered platforms are making it possible to sift through data using natural language processing (NLP) and machine learning algorithms to quickly analyze large amounts of customer-generated information like email, tickets, call transcripts, and more. These data sets have, for the most part, been hard to access given, among other things, their unstructured nature. AI-based tools can search for patterns and recognize key signals that might be difficult and even impossible for humans to spot, especially at scale. 

AI is already accelerating product research by enabling teams to quickly and accurately collect, clean, and identify trends in customer behaviors related to product usage and specific future use cases. AI-based platforms can analyze vast amounts of data in real time, helping companies make decisions faster while reducing costs associated with human labor. Additionally, using natural language processing (NLP), companies can automate text-based research tasks, such as discovering specific product-related insights, which would otherwise take an immense amount of time and resources. With the help of AI, teams can gain valuable insights into their products more efficiently and more effectively than ever before.

Similar articles

View all
Software

Have you heard this from your CEO?

Joel Passen
April 29, 2025
5 min read

"How are we using AI internally?"

The drumbeat is real. Boards are leaning in. Investors are leaning in. Yet, too many leaders hardly use it. Most CS teams? Still making excuses.

🤦🏼 "We’re not ready."Translation: We don't know where to start, so I'm waiting to run into someone who has done something with it.

🤦🏼 "We need cleaner data."Translation: We’re still hoping bad inputs from fractured processes will magically produce good outputs. Everyone's data is a sh*tshow. Trust me. 🤹🏼♂️ "We're playing with it."Translation: We have that one person messing with ChatGPT - experimenting.

😕 "Just don't have the resources right now."Translation: We're too overwhelmed manually building reports, wrangling renewals, and answering tickets forwarded by the support teams.

🫃🏼 "We've got too many tools."Translation: We’re overwhelmed by the tools we bought that created a bunch of silos and forced us into constant app-switching.

🤓 "Our IT team won't let us use AI."Translation: We’ve outsourced innovation to a risk-averse inbox.

It's time to put some cowboy under that hat 🤠 . No one’s asking you to rebuild the data warehouse or perform some sacred data ritual. You don’t need a PhD in AI.

You can start small.

Nearly every AI vendor has a way for you to try their wares without hiring a team of talking heads to perform unworldly 🧙🏼 acts of digital transformation.

Where to start.

✔️ Pick a use case that will give you a revenue boost or reveal something you didn't know about your customers.

✔️ Choose something that directs valuable work to the valuable people you've hired.

✔️ Pick something with outcomes that other teams can use.

Pro Tip: Your CEO doesn't care about chatbots, knowledgebase articles, or things that write emails to customers.

What do you have to lose? More customers? Your seat at the table?

CX Strategy

Talent gets you started. Infrastructure gets you scale.

Joel Passen
April 29, 2025
5 min read

We obsess over hiring A-players. But even the best GTM talent will flounder if the foundation isn’t there.

I’ve seen companies overpay for “rockstars” who quit in 6 months—not because they weren’t capable, but because they were dropped into chaos. No ICP. Bad data. No process. No enablement. No system to measure or coach.

Great GTM teams aren’t built on purple squirrels. They’re built on a strong foundation.

That foundation looks like this:

✅ A crisp, written ICP and buyer persona (not just tribal knowledge)

✅ Accurate prospect data to target the right ICP

✅ A playbook that outlines how you win—and how you lose

✅ A clear point-of-view that your team can rally around in every email, call, and deck

✅ Defined stages, handoffs, and accountability across marketing, sales, CS

✅ A baseline reporting system to see what’s working—and what’s not

When this exists, you can onboard faster, coach better, and scale smarter. It's not easy, and it’s not sexy, but it works.

Want to cut CAC and increase ramp speed? Start with your infrastructure. Hire into a structure.

Software

The Three Biggest Problems Facing B2B SaaS in 2025

Joel Passen
April 29, 2025
5 min read

Most B2B SaaS companies still operate like it's 2020. Everything changed: customer expectations, growth efficiency, and competitive dynamics have flipped.

Here’s what’s changed:

Net-New Growth is Slowing: Recent benchmarks show it’s not just a feeling—it's a trend. The 2024 SaaS Capital Performance Metrics Benchmark report notes a pivot from "growth at any cost" to "lower growth at reduced efficiency," with CAC Ratios, Payback Periods, and Net Revenue Retention all trending in the wrong direction. The biggest slowdowns? Private SaaS companies in the $10-$20M ARR range, where growth rates dropped sharply from 2022 to 2023.

Real-Time Expectations: Today’s customers don’t wait for a QBR. They expect immediate action when things go wrong—or when their needs change. When ignored, they escalate quickly. If your team is still relying on survey responses or notes from a quarterly meeting, you’ve already lost.

Lower Switching Costs/More Competition: SaaS is saturated. Data portability, budget flexibility, and competitive pricing mean your customers can and will leave. Loyalty isn't dead—it just has to be earned every day.

The old playbooks are outdated. In the past, churn was a problem you could try to fix before renewal. Now? It’s a daily risk.

📌 The solution isn’t more headcount (flesh) or more software (abstraction layers). It’s visibility and intelligence/insights. Business need knowledge that uncovers what customers are actually saying—across every channel/silo—and turns it into action before the renewal is at risk.

The playbook is changing fast. AI is raising the bar by transforming how teams detect realtime revenue threats, identify cross-sell opportunities, and respond to customer signals/behaviors beyond just login/usage data, opinions, and surveys. The delta between AI-powered companies and everyone else is widening very fast.

SaaS teams that win in 2025 will focus on minding GRR and stop reacting to churn—and start preventing it.

How many customers will you have to lose before you try Sturdy?

Schedule Demo
A blue and gray logo with a black background
A number of different types of labels on a white backgroundA white background with a red line and a white background with a red line andA sign that says executive change and contact request
A white background with a red line and a blue lineA number of different types of logos on a white backgroundA pie chart with the percentage of customer confusion and unhappy
A number of graphs on a white background